Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos.

نویسندگان

  • C N White
  • C J Rivin
چکیده

Abscisic acid (ABA) is required for seed maturation in maize (Zea mays L.) and other plants. Gibberellins (GAs) are also present in developing maize embryos, and mutual antagonism of GAs and ABA appears to govern the choice between precocious germination or quiescence and maturation. Exogenous ABA can also induce quiescence and maturation in immature maize embryos in culture. To examine the role of GAs versus ABA in regulating maize embryo maturation, the effects of modulating GA levels were compared with those of ABA in embryos cultured at successive stages of development. The effects of GA synthesis inhibition or exogenous GA application differed markedly in embryos at different stages of development, indicating changes in both endogenous GA levels and in the capacity for GA synthesis as embryogenesis and maturation progress. In immature embryos, the inhibition of GA synthesis mimicked the effects of exogenous ABA, as shown by the suppression of germination, the acquisition of anthocyanin pigments, and the accumulation of a variety of maturation-phase mRNAs. We suggest that GA antagonizes ABA signaling in developing maize embryos, and that the changing hormone balance provides temporal control over the maturation phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704

Most of the microspore-derived embryos can not regenerate normally in rapeseed. The effects of gibberellins (GA3), abscisic acid (ABA), and embryo desiccation on normal plantlet regeneration were studied. The donor plants were grown in a growth chamber at day/night temperatures of 15/10˚C with a 16/8h photoperiod, respectively. Microspores were isolated from whole buds of 2.5-3.5mm in length, c...

متن کامل

Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors.

Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed matur...

متن کامل

The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy.

Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination a...

متن کامل

Lettuce seed germination: modulation of pregermination protein synthesis by gibberellic Acid, abscisic Acid, and cytokinin.

Protein synthesis in gibberellin-treated lettuce (Lactuca sativa) seeds has been studied during the lag phase between the beginning of imbibition and the first signs of radicle protrusion. When compared to the water-imbibed controls, both polyribosome populations and radioactive leucine incorporation into protein increase in the embryos of GA(3)- induced seeds early in the imbibition period. Si...

متن کامل

High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds.

Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2000